Telefon:
+49 (0)241 95 163 153
Fax:
+49 (0)241 95 163 155
E-Mail:
orders@antikoerper-online.de

MAP1LC3A Antikörper

Der Kaninchen Polyklonal Anti-MAP1LC3A-Antikörper wurde für WB und IF validiert. Er ist geeignet, MAP1LC3A in Proben von Human zu detektieren. Es sind 9+ Publikationen verfügbar.
Produktnummer ABIN388463

Kurzübersicht für MAP1LC3A Antikörper (ABIN388463)

Target

Alle MAP1LC3A Antikörper anzeigen
MAP1LC3A (Microtubule-Associated Protein 1 Light Chain 3 alpha (MAP1LC3A))

Reaktivität

  • 176
  • 102
  • 84
  • 11
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
Human

Wirt

  • 145
  • 41
  • 2
Kaninchen

Klonalität

  • 132
  • 56
Polyklonal

Konjugat

  • 113
  • 12
  • 8
  • 8
  • 7
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
Dieser MAP1LC3A Antikörper ist unkonjugiert

Applikation

  • 159
  • 72
  • 66
  • 35
  • 29
  • 29
  • 25
  • 21
  • 14
  • 12
  • 10
  • 5
  • 5
  • 5
  • 2
Western Blotting (WB), Immunofluorescence (IF)

Klon

RB7993
  • Aufreinigung

    This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation followed by dialysis against PBS.

    Immunogen

    This LC3 antibody is generated from rabbits immunized with full-length recombinant human LC3 (APG8a).

    Isotyp

    Ig Fraction
  • Applikationshinweise

    IF: 1:200. WB: 1:1000

    Beschränkungen

    Nur für Forschungszwecke einsetzbar
  • Format

    Liquid

    Buffer

    Purified polyclonal antibody supplied in PBS with 0.09 % (W/V) sodium azide.

    Konservierungsmittel

    Sodium azide

    Vorsichtsmaßnahmen

    This product contains Sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only.

    Lagerung

    4 °C,-20 °C

    Informationen zur Lagerung

    Maintain refrigerated at 2-8 °C for up to 6 months. For long term storage store at -20 °C in small aliquots to prevent freeze-thaw cycles.

    Haltbarkeit

    6 months
  • Want, Gillespie, Wang, Gordon, Iomini, Ritch, Wolosin, Bernstein: "Autophagy and Mitochondrial Dysfunction in Tenon Fibroblasts from Exfoliation Glaucoma Patients." in: PLoS ONE, Vol. 11, Issue 7, pp. e0157404, (2017) (PubMed).

    Hu, Wu, Ding, Zhang: "Thrombin preferentially induces autophagy in glia cells in the rat central nervous system." in: Neuroscience letters, Vol. 630, pp. 53-58, (2017) (PubMed).

    Wu, Hong, Wang, Huang, Yeh, Wang, Wang, Chiu: "A novel histone deacetylase inhibitor TMU-35435 enhances etoposide cytotoxicity through the proteasomal degradation of DNA-PKcs in triple-negative breast cancer." in: Cancer letters, Vol. 400, pp. 79-88, (2017) (PubMed).

    Islam, Shin, Yun, Cho, Seo, Chae, Cho: "The effect of RNAi silencing of p62 using an osmotic polysorbitol transporter on autophagy and tumorigenesis in lungs of K-rasLA1 mice." in: Biomaterials, Vol. 35, Issue 5, pp. 1584-96, (2013) (PubMed).

    Liu, Jia, Zhang, Hou, Wang, Hao, Ruan, Yu, Zheng: "Involvement of melatonin in autophagy-mediated mouse hepatoma H22 cell survival." in: International immunopharmacology, Vol. 12, Issue 2, pp. 394-401, (2012) (PubMed).

    Zhang, Morgan, Chen, Choksi, Liu: "Induction of autophagy is essential for monocyte-macrophage differentiation." in: Blood, Vol. 119, Issue 12, pp. 2895-905, (2012) (PubMed).

    Wojtkowiak, Sane, Kleinman, Sloane, Reiners, Mattingly: "Aborted autophagy and nonapoptotic death induced by farnesyl transferase inhibitor and lovastatin." in: The Journal of pharmacology and experimental therapeutics, Vol. 337, Issue 1, pp. 65-74, (2011) (PubMed).

    Mizuno, Yasuo, Bogaard, Kraskauskas, Natarajan, Voelkel: "Inhibition of histone deacetylase causes emphysema." in: American journal of physiology. Lung cellular and molecular physiology, Vol. 300, Issue 3, pp. L402-13, (2011) (PubMed).

    Zheng, Liu, Li, Xu, Xu: "RNA interference-mediated downregulation of Beclin1 attenuates cerebral ischemic injury in rats." in: Acta pharmacologica Sinica, Vol. 30, Issue 7, pp. 919-27, (2009) (PubMed).

  • Target

    MAP1LC3A (Microtubule-Associated Protein 1 Light Chain 3 alpha (MAP1LC3A))

    Andere Bezeichnung

    LC3

    Hintergrund

    Macroautophagy is the major inducible pathway for the general turnover of cytoplasmic constituents in eukaryotic cells, it is also responsible for the degradation of active cytoplasmic enzymes and organelles during nutrient starvation. Macroautophagy involves the formation of double-membrane bound autophagosomes which enclose the cytoplasmic constituent targeted for degradation in a membrane bound structure, which then fuse with the lysosome (or vacuole) releasing a single-membrane bound autophagic bodies which are then degraded within the lysosome (or vacuole). MAP1A and MAP1B are microtubule-associated proteins which mediate the physical interactions between microtubules and components of the cytoskeleton. These proteins are involved in formation of autophagosomal vacuoles (autophagosomes). MAP1A and MAP1B each consist of a heavy chain subunit and multiple light chain subunits. MAP1LC3a is one of the light chain subunits and can associate with either MAP1A or MAP1B. The precursor molecule is cleaved by APG4B/ATG4B to form the cytosolic form, LC3-I. This is activated by APG7L/ATG7, transferred to ATG3 and conjugated to phospholipid to form the membrane-bound form, LC3-II.

    Gen-ID

    84557

    NCBI Accession

    NP_115903, NP_852610

    UniProt

    Q9H492, Q9GZQ8

    Pathways

    Autophagie
Sie sind hier:
Chat with us!